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J .  Phys. A: Math. Gen. 20 (1987) Llll3-Llll9. Printed in the U K  

LETTER TO THE EDITOR 

Universal scaling properties of ballistic deposition and Eden 
growth on surfaces 

Paul Meakin 
Central Research and Development Department, E I du Pont de Nemours and Company, 
Wilmington, DE 19898, USA 

Received 3 August 1987 

Abstract. The structures generated by ballistic deposition and Eden growth from a surface 
can be divided in a natural way (defined by the growth process) into 'trees' or clusters of 
connected sites or particles. The structure of these trees can be characterised by the 
exponents v L  and v ,  which describe how their heights ( h )  and widths ( w )  grow with 
increasing size s ( w  - s"-, h - s " ~ ) .  In addition, the distribution of sizes can be described 
by the power law N ,  - s-' where N ,  is the number of trees of size s. Both the individual 
trees and the complete deposit are compact so that the exponents v A ,  v !  and T satisfy the 
simple scaling relationships ( d  - 1) v _  + v,/ = 1 and T = 2 - U ,. The exponents v, , vlI and T 
seem to be universal for off-lattice ballistic deposition, on-lattice ballistic deposition and 
Eden growth models. However, the corresponding exponents for the river network model 
are different from those for Eden growth and ballistic deposition. From the two-dimensional 
Eden model and ballistic deposition models values of about 0.40, 0.60 and 1.40 were 
obtained for v, , v,, and T, respectively. In three dimensions vl = 0.28, v l l  = 0.46 and T = 1 S4.  

Considerable interest has recently developed in the geometric scaling properties of 
structures grown by very simple processes such a ballistic deposition (Vold 1959) and 
Eden growth (Eden 1961). Much of this interest has been stimulated by the realisation 
that these structures can be described in terms of the concepts of fractal geometry 
(Mandelbrot 1982) and related geometric scaling relationships. In the case of both 
the Eden model and ballistic deposition, the internal structure is uniform on all but 
very short length scales ( D  = d where D is the fractal dimensionality and d is the 
Euclidean dimensionality). For growth from a surface or line in strip geometry, the 
variance in the surface height ( 6 )  can be described by the scaling form 

first introduced by Family and Vicsek (1985) for ballistic deposition and by Jullien 
and Botet (1985) for the Eden model. Here h is the mean height above the originally 
flat surface and L is the width of the strip (or column for d = 3). Recent large scale 
simulations using both ballistic deposition models (Meakin et a1 1986b) and Eden 
growth models (Freche et a1 1985, Hirsch and Wolf 1986, Zabolitsky and Stauffer 
1986, Meakin et a1 1986a, Stauffer and Zabolitzky 1986) are consistent with the idea 
that the exponents a and p in equation (1) are equal for both models, with a having 
a value of and p a value o f f  for d = 2. These values are predicted by the theoretical 
work of Kardar et a1 (1986). For d = 3 there is considerably more uncertainty but it 
seems that both models lead to values of about f and f for a and p, respectively. 
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Thus it appears that the self-affine (Mandelbrot 1986, Voss 1986) fractal surfaces 
of deposits generated by ballistic deposition models and Eden growth models can be 
described in terms of equation (1) and the universal exponents cr and p. 

This letter is concerned with a different aspect of the structure of Eden growth and 
ballistic deposition. In off-lattice ballistic deposition the incoming particles contact 
only one particle in the growing deposit. Consequently, the structure can be decom- 
posed into trees of connected particles. This is illustrated in figure 1 (see also Meakin 
1987). In lattice models for ballistic deposition an occupied site may have more than 
one nearest neighbour. However, similar trees or clusters can be defined during the 
growth process. In the two-dimensional simulations carried out in connection with 
this work, two different models were used. In model I one of the nearest neighbours 
to a newly deposited site was selected at random and the new site was considered to 
be part of the same tree as the randomly selected neighbour. In model I1 the newly 
deposited site was added to the tree associated with the nearest neighbour which is 
closest to the basal line at which the growth originates. If the nearest neighbours are 
all at the same height, one of them is selected randomly and the newly added site is 
added to the tree associated with that site. In the case of three-dimensional cubic 
lattice deposition, only model I was investigated. 

100 diameters 

Figure 1. Part of a small-scale two-dimensional simulation of ballistic deposition with 
normal incidence. One of the ‘trees’ of connected particles is emphasised by full circles 
instead of open circles. 

Two-dimensional Eden growth was carried out using model ‘C’ introduced by 
Jullien and Botet (1985). In this model an occupied surface site is selected at random 
and one of its unoccupied nearest neighbours is then selected (also randomly) and 
filled. In  this model the newly occupied site was considered to be part of the same 
tree as the randomly selected occupied surface site. 

Three-dimensional simulations were carried out using off -lattice ballistic deposition 
with spherical particles, all of the same size, following randomly selected trajectories 
normal to the planar substrate. Simulations were also carried out using a cubic lattice 
ballistic deposition model analogous to the two-dimensional model I. In this model 
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a newly deposited site is assigned to the cluster or tree to which a randomly selected, 
occupied, nearest neighbour belongs. 

For all of the trees or clusters associated with the models described above, the 
maximum width ( w )  and maximum height ( h )  were measured. For the three- 
dimensional models the width of a projection onto the xz plane was measured. Here 
the z direction is perpendicular to the basal surface which lies in the xy plane. The 
tree size distribution N,  was also measured ( N ,  is the number of trees containing s sites). 

For the 2~ off-lattice model 86 simulations were carried out in which IO’ particles 
(discs of unit diameter) were deposited onto a base of size L = 8192 diameters. Periodic 
boundary conditions were used in all of the simulations. Figure 2 ( a )  shows the 
dependence of the maximum height and maximum width of the trees on their sizes 
(s). The results shown in this figure indicate that 

w--S”L (2) 
and 

h - s “11 (3) 
where the exponents v, and 

size distribution can be described by the power law 

have values of 0.4 and 0.6, respectively. 
Figure 2( 6) shows the tree size distribution. It is apparent from this figure that the 

N, - s - ~  (4) 

Figure2. Dependence of (a )  the tree height ( h )  and tree width ( w )  and ( b )  number of 
trees ( N , )  on the tree size (number of particles) for two-dimensional off-lattice ballistic 
deposition. These results were obtained from simulations similar to that illustrated in figure 
1 but were carried out on a much larger scale. 
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for trees which contain more than a few particles but are not large enough to reach 
the upper surface of the deposit. The exponent T has a value of about 1.4. 

Since the trees are compact on all length scales (the fractal dimensionality D is 
equal to the Euclidean dimensionality d for ballistic deposition and the trees cannot 
interpenetrate for d = 2), the exponents v, and vl l  should satisfy the scaling relationship 
vL + V I I  = 1.  Using the arguments presented by Racz and Vicsek (1983) for the cluster 
size distribution exponent T for DLA, the result T = 2 - vli (compared with equation ( 3 )  
of Racz and Vicsek (1983)) is obtained. 

Using the two-dimensional lattice models for ballistic deposition, more than lo9 
sites were deposited on a base of 2'* (262 144) sites. The results from these simulations 
are shown in table 1 .  For the two-dimensional Eden model, growth was carried out 
to a height of 10 000 lattice units on strips of width 214 (16 384) lattice units. The 
results obtained in table 1 were obtained from 12 simulations with L = 214 lattice units. 

Table 1. Values for the exponents v l ,  v l l  and T obtained from the two-dimensional and 
three-dimensional models. The error limits given in this table represent one standard error 
in a linear fit of a straight line to the data on a log-log scale. Systematic errors are 
considerably larger than these statistical contributions to the uncertainty. 

T v-1 2'11 Model DL " 8 1  

2D models 
Off-lattice ballistic 0.412*0.001 0.6 16 * 0.001 1.404 i 0.004 0.668 
Ballistic lattice model I 0.405 * 0.002 0.610 * 0.002 1.401 i0.006 0.664 
Ballistic lattice model I 1  0.404~00.002 0.604 i 0.002 1.407 * 0.006 0.669 
Eden 0.401 *Oo.OO1 0.600 * 0.001 1.406 * 0.004 0.668 
River network 0.339 i 0.0004 0.67 1 * 0.0004 1.33 1 * 0.002 0.505 

3D models 
Off-lattice ballistic 0.290 i 0.002 0.462 * 0.004 1.573 *0.010 0.63 
Ballistic lattice model I 0.283 * 0.002 0.452 i 0.002 1.566 * 0.002 0.63 
Eden 0.271 i 0.002 0.465 * 0.002 1.540 * 0.003 0.58 
River network 0.283 i 0.001 0.540i0.002 1.462 i 0.003 0.524 

The results shown in table 1 are consistent with the idea that v- + vll= 1 and T = 2 - vll 
(or 1 + v,) for both the two-dimensional Eden model and the two-dimensional ballistic 
deposition models. These results also strongly suggest that v, and vll have the universal 
values of 0.4 and 0.6, respectively, for two-dimensional Eden growth and ballistic 
deposition. Kondoh et al (1987) have determined the exponents v, and vIi for 
Scheidegger's ( 1967) 'river network' model. In this two-dimensional lattice model 
nodes at a height Y and position X (horizontal distance) are connected randomly to 
a node at a height of Y - 1 and position X + f or X - i. Kondoh et a1 found that v, = f 
and vll =: for this model and table 1 shows the results obtained from a simulation in 
which a network with a height of 20 000 lattice units was constructed from a base of 
2" lattice units (with periodic boundary conditions). For this model the scaling 
relationships v, + V I I  = 1 and T = 2 - V I I .  However, the exponents v, and vll are different 
from those found for the Eden and ballistic deposition models. 

Table 1 also shows the results obtained from the three-dimensional models. For 
the cubic lattice ballistic deposition model deposits were grown to a height of 5000 
lattice units in columns of width L = 512 lattice units. The results shown in table 1 
were obtained from 16 such simulations. Figure 3 shows a cross section through a 
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128 lattice units 

Figure 3. Cross section through a three-dimensional cubic lattice simulation of ballistic 
deposition. The simulation was carried out in a column of area 1 2 8 ~  128 lattice units. 
The cross section is at a height of 1000 lattice units and the sites belonging to one of the 
trees are distinguished by full squares instead of open squares. 

deposit grown in a column of area 128 x 128 lattice units at a height of 1000 lattice 
units. It appears from this figure that the trees are compact mutually excluding 
structures so that the scaling relationship 2v,+ vll= 1 is expected. The results shown 
in table 1 indicate that vL = 0.28 and vII = 0.45 in accord with this expectation. Figure 
4(a) shows the dependence of h and w on s for the cubic lattice deposition model 
and figure 4(b) shows the cluster size distribution from which a value of about 
1.55 = (2 - vII) was obtained for 7. The off-lattice ballistic deposition model was carried 
out using columns with an area of 128 x 128 diameters. From 100 simulations in which 
5 x lo6 particles were deposited in each simulation, the results shown in table 1 were 
obtained. These results are consistent with asymptotic values of about 0.29, 0.46 and 
1.57 for v L ,  vll and 7, respectively. 

The three-dimensional Eden model results given in table 1 were obtained using a 
three-dimensional version of the two-dimensional Eden model ‘C’ introduced by Jullien 
and Botet (1985). Sixteen simulations were carried out in which growth was continued 
to a height of 2500 lattice units in a channel of width 256 x 256 lattice units. The values 
of the exponents v,, and T (approximately 0.27, 0.46 and 1.54) are quite similar to 
those obtained from both the lattice and off-lattice ballistic deposition models. 

Simulations were also carried out using a three-dimensional version of the river 
network model in which nodes at a height 2 and position ( X ,  Y )  in the horizontal 
plane are connected randomly to one of the nodes at height 2 - 1 and position ( X  -f, 
Y - ; ) ,  ( X - 4 ,  Y + f ) ,  ( X + f ,  Y - i )  or ( X + f ,  Y + f ) .  In this case the entire network 
is compact but the individual trees have a non-compact fractal structure (i.e. the trees 
interpenetrate each other). The results shown in table 1 ,  vl = 0.28, vll = 0.54, indicate 
that 2vL+ vll = 1.10 which is consistent with the observation that the trees are not fully 
compact. However, it is possible that the asymptotic value of 2v,+ vll is 1.0 since 
logarithmic (or other) corrections could give rise to an effective exponent of 1 .1  with 
an asymptotic value of 1.0. Similarly, the value of 0.524 for the ratio v,/vll is not 
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Figure4. Dependence of the mean cluster height (h) ,  mean cluster width ( w )  and number 
of clusters ( N , )  obtained from three-dimensional cubic lattice deposition simulations. ( U )  

shows the dependence of In(h) and In(w) on In(s). ( b )  shows the dependence of In(N,) 
on In(s) where N ,  is the number of clusters containing s sites. 

completely inconsistent with an  asymptotic value of 0.5 which might be expected for 
this model since the path from the top of a tree (or from the end of any of its branches) 
is a random walk to its base (Kondoh er a1 1987, Takayasu and Nishikawa 1986). The 
scaling relationship T = 2 - vll holds quite well for the 3~ river network model. This is 
not surprising since the derivation of this relationship (Racz and Vicsek 1983) depends 
on the fact that the entire structure is compact but does not depend on the structure 
of its component trees. 

There is already evidence indicating that the Eden models and ballistic deposition 
models belong to the same universality class (see Meakin et al 1986b, for example) 
in the sense that the exponents a, p and D are equal for these models. The results 
presented here lend further support to this idea. The two-dimensional simulations 
have been carried out on a large scale covering several orders of magnitude in length 
scales. In  this case the evidence for universality is strong. The three-dimensional 
simulations have also been carried out on quite a large scale (particularly in the case 
of the lattice model). However, the range of length scales is substantially smaller and 
the uncertainties are correspondingly larger. In any event, the effective exponents 
obtained from these simulations satisfy quite well the scaling relationships 2v, + vII = 1 
and T = 1 - vll. 

I would like to thank M Matsushita for sending me a copy of Kondoh et a1 (1987) 
prior to publication. The work reported here was stimulated by this paper. 
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